Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cherecheş, Marius"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Experimental study on thermophysical properties of alumina nanoparticle enhanced ionic liquids
    (Journal of Molecular Liquids, 2019-07-07) Cherecheş, Elena Ionela; Prado, Jose I.; Cherecheş, Marius; Adriana Minea, Alina; Lugo, Luis
    In this experimental study, several alumina Nanoparticle Enhanced Ionic Liquids were prepared and studied in regard to their stability, pH, density and thermal conductivity. These new fluids were manufactured by dispersing aluminium oxide nanoparticles in different mixtures based on water and 1-ethyl-3-methylimidazolium methanesulfonate ionic liquid. Furthermore, thermophysical properties (density, thermal conductivity) of pure and binary mixtures with water and 1-ethyl-3-methylimidazolium methanesulfonate were studied in order to select and propose base fluids to design new advanced heat transfer fluids. The pH of the dispersions was determined as around 8.0 - 8.5. In regard to density, the overall [C2mim][CH3SO3] density is higher by 25% than that of water and the influence of ionic liquid density over the mixtures was found to be much higher than that of water, while for the alumina Nanoparticle Enhanced Ionic Liquids the density respects classical equations. Evaluation of thermal conductivity revealed an increase of up to 13% in thermal conductivity when nanoparticles are added to the base fluids and new correlations based on mass fraction and temperature were proposed.

Calderón, repositorio institucional del Centro Universitario de la Defensa, ENM

  • Cookie settings
  • Privacy policy
  • Send Feedback