Browsing by Author "López-González, José Luis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAssessing the energy demand reduction in a surgical suite by optimizing the HVAC operation during off-use periods(Applied Sciences (Switzerland), 2020-03-25) Cacabelos, Antón; López-González, José Luis; González-Gil, Arturo; Febrero-Garrido, Lara; Eguía-Oller, Pablo; Granada-Álvarez, EnriqueHospital surgical suites are high consumers of energy due to the strict indoor air quality (IAQ) conditions. However, by varying the ventilation strategies, the potential for energy savings is great, particularly during periods without activity. In addition, there is no international consensus on the ventilation and hygrothermal requirements for surgical areas. In this work, a dynamic energy model of a surgical suite of a Spanish hospital is developed. This energy model is calibrated and validated with experimental data collected during real operation. The model is used to simulate the yearly energy performance of the surgical suite under different ventilation scenarios. The common issue in the studied ventilation strategies is that the hygrothermal conditions ranges are extended during off-use hours. The maximum savings obtained are around 70% of the energy demand without compromising the safety and health of patients and medical staff, as the study complies with current heating, ventilation and air conditioning (HVAC) regulations.
- ItemDevelopment of a calibrated simulation method for airborne particles to optimize energy consumption in operating rooms(Energies, 2019-06-24) Febrero-Garrido, Lara; López-González, José Luis; Eguía-Oller, Pablo; Granada-Álvarez, EnriqueOperating rooms are stringent controlled environments. All influential factors, in particular, airborne particles, must be within the limits established by regulations. Therefore, energy efficiency stays in the background, prioritizing safety and comfort in surgical areas. However, the potential of improvement in energy savings without compromising this safety is broad. This work presents a new procedure, based on calibrated simulations, that allows the identification of potential energy savings in an operating room, complying with current airborne particle standards. Dynamic energy and airborne particle models are developed and then simulated in TRNSYS and calibrated with GenOpt. The methodology is validated through experimental contrast with a real operating room of a hospital in Spain. A calibrated model with around 2% of error is achieved. The procedure determines the variation in particle concentration according to the flow rate of ventilation supplied and the occupancy of the operating room. In conclusion, energy savings up to 51% are possible, reducing ventilation by 50% while complying with airborne particles standards.